
Thermochimica Acta, 129 (1988) 71-75 
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

71 

PARTIAL GIBBS ENERGIES FROM 
REDLICH-KISTER POLYNOMIALS 

MATS HILLERT 

Division of Physical Metallurgy, Royal Institute of Technology, S-10044 Stockholm (Sweden) 

(Received 21 January 1988) 

ABSTRACT 

According to Redlich and Kister the polynomial representation of the excess Gibbs energy 
of a binary system should be written in a special form in order to be useful for predicting the 
properties in a higher-order system. General expressions for partial Gibbs energies are now 
derived from the Redlich-Kister polynomial for substitutional and interstitial solutions, and 
for the more general case of solution phases with two sublattices. 

INTRODUCTION 

It is a common procedure to represent the excess molar Gibbs energy of a 
binary solution with a so-called Redlich-Kister polynomial 

This expression seems to have been first used by Guggenheim [l] but 
Redlich and Kister [2] were the first ones to suggest that this form should be 
used to represent the binary contributions to the thermodynamic properties 
of higher-order systems. For such an application all the various polynomials 
used for binary systems yield different results because x1 + x2 is no longer 
equal to 1 [3]. 

Expressions for the Gibbs energy of higher order systems, based upon 
binary properties, are today in frequent use for predicting thermodynamic 
properties as well as phase equilibria and complete phase diagrams. Most of 
that work is carried out with computers and there are many programs 
available which operate directly on the molar Gibbs energy. It should thus 
be unnecessary to elaborate eqn. (1) further; on the other hand, the litera- 
ture is still full of lengthy derivations of expressions for partial Gibbs 
energies based upon various slight modifications of eqn. (1). It would thus 
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seem justified to present a derivation for the general case, once and for all. 
Such a derivation will now be presented. It will first be carried out without 
using the simplifications possible in a binary system where xi + x2 = 1. The 
result will thus be applicable to higher-order systems as well. Furthermore, 
solution phases with two sublattices will be treated, with special emphasis on 
interstitial solutions. 

SUBSTITUTIONAL SOLUTION 

The partial Gibbs energy of an element i will be derived using the 
well-known relation 

Gi = G, + aG,/aXi - CXlaG,/aX, (2) 

Applying this relation to the excess Gibbs energy given by eqn. (1) we can 
evaluate the contribution from interactions between two elements in a 
substitutional solution 

EG~=oLg(niXjtXj-2XiXj)+~kL,[Xi~j(Xi-Xj)k+Xj(Xi-Xj)k 

1 

+kxiXj(Xi-Xj)k-1-2XiXJ(Xi-Xj)k 

-_XiXj(Xi-Xj) k-‘( Xi - Xj)] 

=oL,Xj(l-Xi)+~kLijXj(Xi-Xj)k-1[(1-Xi)(l+k)(Xi-Xj)+kXj] 
1 

(3) 
For the contribution to the partial Gibbs energy of i from the interaction 
between two other elements, 1 and j, we obtain 

EGf=“L~(X~Xj-ZXIXj) + ~kLy[X~Xj(X~-Xj)k-2XIXj(XI-Xj)k 

1 

- kX,Xj(X1 - Xj)k-l(xl -x,)1 

= --X,Xj 

[ 
‘Id,, + ~kLlj(X,-Xj)k(l + k, I (4) 

1 

For a multicomponent system we should add contributions from all binary 
interactions as given by eqns. (3) and (4). For a binary A-B system we can 
replace 1 - xA by xs and 1 - x B by xA and obtain from eqn. (3) 

‘L,, + tkL,,(xA - ~~)~-7(2k + 1)x, - xg] 
1 i 

(5) 

‘L,, + i*&(x/, - ~n)~-l[x/+, - (2k + 1)x,] 
1 
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It should be noted that according to our notation kLBA = - kL,, for odd k 

values. 

PHASES WITH TWO SUBLATTICES 

In the same way one could derive expressions for a phase with two 
sublattices. One would then have to consider the interaction between two 
elements on one sublattice but also take into account the possibility that the 
strength of this interaction depends upon what element occupies the other 
sublattice. Such an interaction parameter may be denoted by Ly and its 
contribution to the excess Gibbs energy of one mole of formula units would 

be [41 

‘Gb=YMYiYj~kL~(Yi-Yj)k 
0 

y is here the site fraction, i.e. mole fraction defined for each sublattice 
separately. The partial Gibbs energy for a compound M,i, is obtained from 

EG,i =EG, - CyaEG,/ay + aEG,/ay, + aEG,/ayi (8) 

There will be contributions from four types of terms, originating from the 
interactions Ly, LT, Ly and Lt. They give the following expressions 

EG’,i=“L~Yj(yi+y~-2yiy,) + ~kL~(Yi-Yj)k-lYj 

X {(Vi -Yj)[ YM(’ + k)(l - fi) +Yi -YMYiI + kY,Yj} 

EG~i=“L~y~yj(l -2Yi) + ~kLf;‘(yi-Yj)k-lY~Yj 

X { (Yi -Yj)[(l + k)(; -Yi) -Yi] + kYj} 

(9 

(10) 

EG~i=“L~yNylyj(-2) + 

+ kkLy(Y, -Yj)“YlYj(l- 2YM - kYM) (11) 
1 

Equivalent terms would come from the interactions on the first sublattice, 
LiMN, LL,, LkN and LiN. Of course, the total value of EG,i is obtained by 
adding these expressions for all the interactions in the system. For a ternary 
M-C-D system with two elements C and D on one sublattice, one has 
yo +y,, = 1 and obtains 

EGMC = Y:, “LYD + kkL,M,(Yc -YDlky2k + l>Yc _YDl i 1 

EG 2 MD=yC 
i 
'LFD+ ikLp~(~C-~~)kel[~C- (2k+l)~~] 

1 

(13) 

(14) 
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INTERSTITIAL SOLUTIONS 

For an interstitial solution there are some vacant sites on one sublattice as 
illustrated by the formula M,(I,Va),. Equations (9)-(12) still apply if we 
treat the vacancy as an element. In this case EGMVa is identical to aEG, 
since there are a moles of M in each mole of formula units. In order to 
evaluate the excess partial Gibbs energy for an interstitial element i one 
must take the difference between EG,i and EGMVa. In this case there would 
be eight types of terms originating from Lf;“, Ly, Lr, Lt, LK,, Lf*‘,,, LK, 

and Lyv,. However, for Ly and Lt the contributions to EG,i and EGMVa 
will be identical and will disappear when the difference is taken, a fact 
which is evident from the following procedure of calculation which results 
directly from eqn. (8) 

cEGi = EG,i - EGMVa = aEG,/ayi - aEG,/ayv, (15) 

It is immediately evident that there will be no contribution from Lv and 
Lt. The following contributions are obtained 

cEGf ="Lk~,(~v, -Yi) + tkLKaYM(Yi -YVEI)~-~ 

x [2kYiYVa - (Yi -YVa)2] (16) 

CEG2_OL~YMYj + ~*L~YMYj(Yi-Yj)P-l[(k+ l)Yi-Yj] (17) 
1 

cEGf =‘L;,y,y, (-1) + &LkYMYl(Y, -Yvr’[YI - (k + l)Y”al 

(18) 
The three contributions from Lg,, Ly and Lyv,, are obtained by simply 
inserting y, instead of y, in eqns. (16)-(18). In addition there may be 
interactions on the first sublattice that yield contributions of the form 

cEG; = ( LiKN - LV,a,)YKYN(YK -YiJ ( 1% 

For a binary interstitial solution represented with the formula M,(C,Va), we 
obtain after using y, - y,, = 1 

aEG M = Y: 
i 

oLkZ + &L11,,(1- 2yc)k-1[2k + 1 - 2yc(k + l)] 
I 

(20) 
1 

cEG C =‘Lva,,(l - 2yc) + ~kL~,&l - 2~,)~-’ 

x [l - 2y,(k + 2) + 2y,(k + 2)] (21) 
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